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and j =V -1. The lower limit is 0 rather than -oo in this case because Z represents
power and therefore is non-negative.

Assuming the {z;} are independent and identically-distributed (i.i.d.), (A-2) and (A-9)
yield:

J
, RN | b
&7, (w) | J = Elexp ]wj§1z,- = [E[ef“"f]] = [<1>,j (w)] . (A-10)
Taking the expectation over J using (A-1) gives:

o0

@z, (w) = n2=0

e:? [@,j(w)]” = exp{K[{)zj(w)-l]}. (A-11)

Thus, Z has a compound Poisson distribution.* Letting v =2/, (A-4) gives the
characteristic function of z; as:

o0 o0
: ) :
8, (w) = | fe,@)e/dz = = | z71Velvigz, (A-12)
Z] ‘of ZJ ’YKKT[/Z

The “second characteristic function” of Zg is defined as the natural logarithm of the
characteristic flmction.Jr Hence,

* See William Feller, An Introduction to Probability Theory and Its Applications, second ed., vol. II,
New York: Wiley, 1971.

t See A. Papoulis, Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill,
1965.
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o0
V7, () & In8z, () = K[8z,(0)-1] = 2 [ rveiung g (A-13)
- g
K2
Integrating by parts gives and recalling that Z = Klim Zx gives:*
—00
o0

(@) = Jim Yz, () = ju [z eiveaz
0

=-|w|*T(1-v)e ™2, w>0

=-|w|*T(1-v)ei™?, w<0, (A-14)

where I'(*) is the Gamma function.!

* See also Tables of Integral Transforms, A. Erdelyi, et al, vol. 1, New York: McGraw-Hill, 1954, p. 10
§1.3, #1, and p. 68 §2.3 #1.

t See Abramowitz and Stegun, op. cit., chapter 6.
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C. The PDF and CDF of the Aggregate Interference

The pdf of Z is given by the Fourier inversion formula:

¢ o] (2. <]

1 ; 1 ;
= jwzg = = | o WW) ,-jwz
:f(bz(w)e dw 27r-fe el*dw

fz(z)

00 o0
i M -jwz -
) L L goier . (A-15)

Letting x & -T(1-v)e ™/ =D(1-1)e/™ /D Wy(w) = w¥x for w>0 and Uy = -w’x*
for w < 0 (where x* denotes the complex conjugate of x), and (A-15) becomes:

fo's} (o o]
=_1__ __1___ V. \k ,-jwz Vo oy ,jwz -
f2@) = 55 = {[(w X 7ivE + (@War el du. (A-16)
o0 o0

The integrals |w*Ve /“?*dw and |w**e/“*dw can be evaluated using a form of Euler’s
0 0
integral formula for the Gamma function*

o0

I() = & [w T dw, Refy) >0, Refé} >0, (A-17)
0

* Abramowitz and Stegun, op. cit., p. 255.
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where Re{-} denotes the real part of the complex argument and the condition on £ is
necessary to assure convergence of the integral.

Letting £ =z - je, where z and € are real and positive, (A-17) gives:

o 00

fwk"e'j“’zdw = lim {w* e /*¢dw = lim —(——lr.kl;ill
0 e—0 e—0 (Je v

T+l _ Tke+1)
T (pyvtl  hvrleimGvan/2 z>0, (A-183)

and

o0 o0
fwk"ej“’zdw = lim wk"e'j“’f‘dw = im J___)_r kl/+}1
o =0y = G
_ DPlhv+1) _ (kv + 1)
S A T WL R z>0,  (A-18b)
Eq. (A-16) then becomes:
(o]
1 Tkv+ 1 . .
fz(2) = —Z;kgoét?"_;‘*—ll [xke jxv+1)/2 o (x*)k e kv + 1)/2]
[0 o]
1 v Tkv + DITA-)f
-3 ( k'z),[yfl v)] cosflen(1-v/2) (ko + 1)/7]

_1 ; L(kv+ DT(1-)F
- kv+1
k=0 klz

sinkn(1-v), z>0. (A-19)
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The argument of the sum vanishes for k = 0, and (A-19) can be written as:*

o k
f2(2) = %}EE’%—D— [_1‘_('1_31] sinkn(1-v), z>0.  (A-20)
The CDF is then:
~ 1w I [T T
F2@) = 1- [ f2(eMe = 1- -8 R A sinkn(1-1), 2 >0.(A21)

Note that for z>>1, the first term in the series dominates. Since
T()T(1-v) = mesem(1-v)] Fz(z)~1-27% forz >> 1.

D. Closed-Form Expressions for Fourth-Power Propagation

For the special case of y=4 (v =1/2), (A-20) and (A-21) can be reduced to closed
form.} Since sinkx /2 vanishes for even values of k, and I'(1/2) = v, (A-20) becomes:

1 - T(k +3/2)x* *1/2
fz@) = 232 ,Eo (2 + 1)1z%

-1)*, 4=4, z>0. (A-22)

* Expressions equivalent to (A-20) and (A-21) are given by E. S. Sousa and J. A. Silvester in
“Optimum Transmission Ranges in a Direct-Sequence Spread-Spectrum Multihop Packet Radio
Network,” IEEE Joumnal on Selected Areas in Communications, vol. 8, no. 5, June 1990, pp. 762-771.
However, the expression given in that paper for the CDF is incorrect and actually represents the
complementary distribution.

t Abramowitz and Stegun, op. cit., p. 256, 6.1.17.

$ This also is noted by Sousa and Silvester (op. cit.).
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With the identity:*

T(k + 1)T(k + 3/2)z2 +3/2
vVor

I‘[Z(k + 1)] =

’

and the fact that I[2(k + 1)] =['(2k + 2) = (2k + 1)! (A-23) yields:

T(k+3/2)  Vor vV

(k+ 1)1 f12%*32 7 1.4k

and (A-22) is seen to be:

o0 . .
£2@) = i B, L

= —;—2'3/2e'7/4z , 7:4.

In a similar manner, (A-21) reduces for v = 4 to:

_ . 1y T(k+1/2) #*12
FZ(Z) 1 k=0 (2k+1)' zk+1/2

With the identity:|

* Abramowitz and Stegun, op. cit., p. 256, 6.1.18.
t Id

-1k, v=4,2z>0.

(A-23)

(A-24)

(A-25)

(A-26)
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%-1/2
T(k)T(k :/%2)2 , (A27)

(%) =

and with (2k + 1)! = (% -1)!- (2% + 1)- 2k, and T(2k) = (2K - 1)!,

Tk +1/2) _ N
(Zk+1)!  kl(2k+1)2FF1

(A-28)

Substituting (A-28) into (A-26) yields:

[o ]
2 7|'k+1/2
Vr k=0 k1(2k + 1)zF+ Y

00 2% +1
Vx k=0  k'(k+1)

Fz(z) = 1-

2 (' l)k

=1-

(A-29)

=erfc[‘/?], 1=4,

2z

where erfc(-) is the complementary error function* defined as

(oo}

erfe(x) & %,, .[ e de = 1-erf(x) (A-30a)

* Abramowitz and Stegun, op. cit., chapter 7.
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and erf(x) is the error function

erf(x) A %ﬂ{e*zd& 2 ¥ (1) (A-30b)

Va0 kl(k+1)
E. Expressions for the Blocking Probability

From (A-8) and (A-21), the blocking probability is:

Pye) =15 ﬂ%ﬁl [or(1-2/)]f sinkn(1-2/2), v>2. (A1)

As noted previously, Fz ~1-z"%/7 for z >> 1. Hence, from (A-8), P, () ~a for a << 1.

For v = 4, (A-8) and (A-29) give:

Py(o) = erf[ u ] fory=4. (A-32)

2

F. The Single-Interferer Case

In the context of this model, the blocking probability for the “single-interferer” case is
easily derived by recalling that the average interference source density is 1/7 active
transmitters per unit area, and the normalized interference power from a source a
distance s from the receiver is s™7. Since the number of active transmitters within
(normalized) distance s of the receiver is a Poisson-distributed random variable with
mean value s, the probability that there are no active transmitters within that
distance of the receiver is e**". Thus, since the normalized interference from a single
source at distance s is Z =57, the P{Z < z} for the “single-interferer” case is equal to
the probability that there are no interfering transmitters within distance s =z /7 of
the receiver. Hence, for the “single interferer” case,
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and from (A-8), the blocking probability for the single-interference case at the edge of

FZ(Z) = exp[_z-Z/'y] ’ z20, : (A-33)

the service area is:

Fig. A-1 shows Fz(z) for v=3.0, 3.5, and 4.0, for both the multiple-interferer and
single-interferer cases, and the blocking probability is shown in Fig. 6 in the body of

Py(a) = 1-e7@. (A-34)

this paper.
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Figure A-1. The CDF of the normalized aggregate interference power.



